Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

domingo, 3 de março de 2024

Aulas de Eletricidade - Eletrostática - aula 1 e aula2

 

Cursos do Blog - Eletricidade

 Bastão de PVC, atritado com lã, atraindo pequenos pedaços de papel

Primeira aula
Eletrostática. Processos de eletrização (I) 

  Nicolau

Corpo eletrizado

É o corpo que possui excesso de elétrons (carga elétrica negativa) ou falta de elétrons (carga elétrica positiva).

Princípios da Eletrostática

Princípio da atração e repulsão 
x
Cargas elétricas de mesmo sinal repelem-se e cargas elétricas de sinais contrários atraem-se.

Princípio da conservação das cargas elétricas
 
Num sistema eletricamente isolado, a soma algébrica das quantidades de cargas positivas e negativas é constante.



Condutores e isolantes

Condutores elétricos

Meios materiais nos quais as cargas elétricas movimentam-se com facilidade.

Isolantes elétricos ou dielétricos

Meios materiais nos quais as cargas elétricas não têm facilidade de movimentação.

Elétrons livres: elétrons mais afastados do núcleo atômico, ligados fracamente a ele. Os elétrons livres são os responsáveis pela condução de eletricidade nos metais.

Eletrização por atrito

Os corpos atritados adquirem cargas elétricas de mesmo valor absoluto e de sinais contrários.






Eletrização por contato

Os condutores adquirem cargas elétricas de mesmo sinal. Se os condutores tiverem mesma forma e mesmas dimensões, a carga final será igual para os dois e dada pela média aritmética das cargas iniciais.


Exercícios Básicos

Exercício 1:
Atritando-se uma barra de vidro com um pano de lã, inicialmente neutros, ambos se eletrizam. As cargas elétricas que a barra de vidro e o pano de lã adquirem têm mesmo sinal? Elas têm o mesmo valor absoluto?

Resolução: clique aqui

Exercício 2:
Quando você se penteia o atrito eletriza os cabelos e o pente. Explique porque, nestas condições, os fios de cabelo ficam arrepiados.

Resolução: clique aqui

Exercício 3:
Ao descer por um escorregador de plástico, os cabelos compridos de uma menina ficam arrepiados. Explique.

Resolução: clique aqui

Exercício 4:
Uma esfera metálica A eletrizada é colocada em contato com outra esfera metálica B, inicialmente neutra. Indique as proposições corretas:
I) Se a esfera A estiver positivamente eletrizada, prótons passam de A para B.
II) Se a esfera A estiver positivamente eletrizada, elétrons passam de B para A
III) Se a esfera A estiver negativamente eletrizada, elétrons passam de A para B.
IV) No final do processo A e B adquirem cargas elétricas de mesmo sinal.

Resolução: clique aqui

Exercício 5:
Uma esfera metálica A eletrizada com carga elétrica Q é colocada em contato com outra esfera B idêntica à primeira, mas inicialmente neutra. Após o processo a carga elétrica que B adquire é igual a:

a) Q;      b) Q/2;      c) Q/4;      d) Q/8

Resolução: clique aqui

Exercício 6:
Uma esfera metálica A eletrizada com carga elétrica Q é colocada em contato com outra esfera B idêntica à primeira, eletrizada com carga elétrica 2Q. Após o processo a carga elétrica que B adquire é igual a:

a) 3Q/2;      b) 5Q/2;      c) 7Q/4;      d) 3Q

Resolução: clique aqui

Exercícios de Revisão 

Revisão/Ex 1: 
(Fatec-SP)
Analise as afirmações abaixo:

I. Todo objeto que tem grande quantidade de elétrons está eletrizado negativamente.
II. Eletrizando-se por atrito dois objetos neutros obtêm-se, ao final desse processo de eletrização, dois objetos eletrizados com carga de mesmo sinal.
III. Encostando-se um objeto A, eletrizado negativamente, em um pequeno objeto B, neutro, após algum tempo o objeto A ficará neutro.

Deve-se concluir, da análise dessas afirmações, que:

a) apenas I é correta.
b) apenas II é correta.
c) apenas II e III são corretas.

d) I, II e III são corretas.
e) não há nenhuma corretas.


Resolução: clique aqui


Revisão/Ex 2:
 

(Fuvest-SP)
A lei de conservação da carga elétrica pode ser enunciada como segue:


a) A soma algébrica dos valores das cargas positivas e negativas em um sistema isolado é constante.
b) Um objeto eletrizado positivamente ganha elétrons ao ser aterrado.
c) A carga elétrica de um corpo eletrizado é igual a um número inteiro multiplicado pela carga do elétron.
d) O número de átomos existentes no universo é constante.
e) As cargas elétricas do próton e do elétron são, em módulo, iguais.
 

Resolução: clique aqui

Revisão/Ex 3: 
(UFSC)
A eletricidade estática gerada por atrito é fenômeno comum no cotidiano. Pode ser observada ao pentearmos o cabelo em um dia seco, ao retirarmos um casaco de lã ou até mesmo ao caminharmos sobre um tapete. Ela ocorre porque o atrito entre materiais gera desequilíbrio entre o número de prótons e elétrons de cada material, tornando-os carregados positivamente ou negativamente. Uma maneira de identificar qual tipo de carga um material adquire quando atritado com outro é consultando uma lista elaborada experimentalmente, chamada série triboelétrica, como a mostrada abaixo. A lista está elaborada de tal forma que qualquer material adquire carga positiva quando atritado com os materiais que o seguem. 



Com base na lista triboelétrica, assinale a(s) proposição(ões) CORRETA(S) e dê a resposta como a soma delas.

01. A pele de coelho atritada com teflon ficará carregada positivamente, pois receberá prótons do teflon.
02. Uma vez eletrizados por atrito, vidro e seda quando aproximados irão se atrair.
04. Em processo de eletrização por atrito entre vidro e papel, o vidro adquir carga de +5 unidades de carga, então o papel adquire carga de -5 unidades de carga.
08. Atritar couro e teflon irá produzir mais eletricidade estática do que atritar couro e pele de coelho.
16. Dois bastões de vidro aproximados depois de atritados com pele de gato irão se atrair.
32. Um bastão de madeira atritado com outro bastão de madeira ficará eletrizado.


Resolução: clique aqui

Revisão/Ex 4: 
(UEFS-BA)
Quatro esferas condutoras iguais têm, respectivamente, cargas elétricas Y, Q, Q/2 e 2Q. Colocando-se todas em contato e, depois, separando-as, cada uma ficou com uma carga elétrica igual a 5Q/4.

Sabendo-se que as esferas trocaram cargas elétricas apenas entre sí, é correto afirmar que a carga elétrica Y, da primeira carga elétrica era igual a:

a) Q/2
b) Q
c) 3Q/2
d) 2Q
e) 5Q/2


Resolução: clique aqui

Revisão/Ex 5: 
(Ufla-MG)
Considere três esferas 1, 2 e 3, condutoras, idênticas e elaboradas de um mesmo material. Inicialmente a esfera 1 está carregada com carga Q e as esferas 2 e 3 estão descarregadas. Coloca-se a esfera 1 em contato com a esfera 2, eletrizando-a, e, em seguida, elas são separadas. Posteriormente coloca-se a esfera 2 em contato com a esfera 3, eletrizando-a, e separando-as também. Finalmente a esfera 3 é colocada em contato com a esfera 1, sendo depois separadas. Dessa forma, a carga final da esfera 1 é:

a) 3Q/4
b) 3Q/8
c) Q/3
d) Q


Resolução: clique aqui  

Desafio:

Uma esfera metálica A eletrizada com carga elétrica 3,2 μC é colocada em contato com outra esfera idêntica B, eletrizada com carga elétrica 9,6 μC.

a) Determine as cargas elétricas adquiridas por A e B após o contato.
b) Que partículas passaram de uma esfera para outra, prótons ou elétrons?
c) De A para B ou de B para A?
d) Qual é o número de partículas que foram transferidas de uma esfera para outra?

É dada a carga elétrica elementar: e = 1,6.10-19 C.







Cursos do Blog - Eletricidade

Barra de plástico após ser atritada com lã é aproximada da esfera de um eletroscópio de folhas. 
O eletroscópio sofre indução eletrostática e as folhas se abrem.

2ª aula
Processos de eletrização (II)
 Nicolau
x
Eletrização por Indução

O condutor A (indutor) eletrizado positivamente é aproximado do condutor B (induzido), inicialmente neutro. As cargas do induzido separam-se devido às interações eletrostáticas. Cargas negativas são atraídas pelas cargas positivas do indutor e cargas positivas são repelidas.


Ligando-se o induzido à Terra, as cargas positivas são neutralizadas por cargas negativas (elétrons) que fluem da Terra através da ligação. No induzido ficam apenas cargas negativas.



O processo é finalizado desligando-se o induzido da Terra e afastando-se o indutor. 


O induzido (B) inicialmente neutro está finalmente eletrizado com carga de sinal contrário à do indutor (A).


O processo pode ser feito com o indutor carregado com cargas negativa. Nesse caso o induzido ficará carregado positivamente.

Corpo eletrizado atraindo um corpo neutro

Por indução um corpo eletrizado pode atrair um corpo neutro.


As cargas positivas de A atraem as negativas de B e repelem as positivas de B. A força de atração tem intensidade maior do que a de repulsão.




Observação: Ao abrir o link da UFRGS você encontrará a animação: "eletrização por contato". Proceda de acordo com as instruções abaixo para encontrar a eletrização por indução.

Quadro 1

Quadro 2



Exercícios básicos

Exercício 1:
Quando uma esfera metálica A eletrizada negativamente é aproximada de outra esfera metálica B, inicialmente neutra, ocorre o fenômeno da indução eletrostática. Faça um desenho representando a esfera A (eletrizada negativamente), a esfera B e as cargas elétricas induzidas em B.

Resolução: clique aqui

Exercício 2:
Qual é a sequência dos procedimentos que devem ser seguidos para que B fique eletrizado? O sinal da carga elétrica que B adquire é o mesmo de A?

Resolução: clique aqui

Exercício 3:
Um bastão de borracha, eletrizado positivamente, é aproximado de duas esferas metálicas, A e B, que estão em contato. A seguir, afasta-se ligeiramente uma esfera da outra e remove-se o bastão de borracha. Por último, as esferas são suficientemente afastadas de modo que uma não exerça influência na outra. Faça um esquema da distribuição de cargas elétricas induzidas nas esferas A e B nas situações:

a) Bastão próximo às esferas que estão em contato:


b) Esferas são ligeiramente afastadas e o bastão é removido:


c) Esferas são muito afastadas uma da outra


Resolução: clique aqui

Exercício 4:
Numa aula de Eletrostática, o professor coloca a seguinte situação: são dadas três esferas metálicas A, B e C. Observa-se que B atrai A e B repele C. No que diz respeito ao estado de eletrização das esferas, o professor apresenta quatro possibilidades e pede aos alunos que escolham aquelas compatíveis com as observações:


Qual ou quais você escolheria?

Resolução: clique aqui 

Exercício 5:
Uma barra de vidro depois de atritada com um pano de lã atrai pequenos pedaços de papel. Como você explicaria este fato, sabendo-se que o papel é um isolante?

Resolução: clique aqui
 
Exercícios de Revisão 

Revisão/Ex 1: 
(PUC-SP)
Os corpos eletrizados por atrito, contato e indução ficam carregados respectivamente com cargas de sinais:

a) iguais, iguais e iguais;
b) iguais, iguais e contrários;
c) contrários, contrários e iguais;
d) contrários, iguais e iguais;

e) contrários, iguais e contrários

Resolução: clique aqui

Revisão/Ex 2: 
(UFMG)
Durante uma aula de Física o professor Carlos Heitor faz a demonstração de eletrostática que se descreve a seguir. 

Inicialmente ele aproxima duas esferas metálicas - R e S -, eletricamente neutras, de uma outra esfera isolante, eletricamente carregada com carga negativa, como representado na figura 1. 
Cada uma dessas esferas está apoiada num suporte isolante. 
Em seguida, o professor toca o dedo, rapidamente, na esfera S, como representado na figura 2. 
Isso feito, ele afasta a esfera isolante das outras duas esferas, como representado na figura 3.


Considerando-se essas informações, é correto afirmar que, na situação representada na figura 3:

a) a esfera R fica com carga negativa e a S permanece neutra.
b) a esfera R fica com carga positiva e a S permanece neutra.
c) a esfera R permanece neutra e a S fica com carga negativa.
d) a esfera R permanece neutra e a S fica com carga positiva.


Resolução: clique aqui  

Revisão/Ex 3:
(FUVEST)
Aproximando-se uma barra eletrizada de duas esferas condutoras, inicialmente descarregadas e encostadas uma na outra, observa-se a distribuição de cargas esquematizadas na figura abaixo.



Em seguida, sem tirar do lugar a barra eletrizada, afasta-se um pouco uma esfera da outra. Finalmente, sem mexer mais nas esferas, remove-se a barra, levando-a para muito longe das esferas. Nessa situação final, a figura que melhor representa a distribuição de cargas nas duas esferas é:



Resolução: clique aqui

Revisão/Ex 4:
(Fuvest-SP)
Três esferas metálicas iguais, AB e C, estão apoiadas em suportes isolantes, tendo a esfera A carga elétrica negativa, Próximas a ela, as esferas B e C estão em contato entre si, sendo que C está ligada à Terra por um fio condutor, como na figura.




A partir dessa configuração, o fio é retirado e, em seguida, a esfera A é levada para muito longe. Finalmente, as esferas B e C são afastadas uma da outra. Após esses procedimentos, as cargas das três esferas satisfazem as relações:

a) QA < 0--------
QB > 0--------QC > 0
b) 
QA < 0--------QB = 0--------QC = 0
c) 
QA = 0--------QB < 0--------QC < 0
d) 
QA > 0--------QB > 0--------QC = 0
e) 
QA > 0--------QB < 0--------QC > 0 

Resolução: clique aqui

Revisão/Ex 5
(UFRJ)
Três pequenas esferas metálicas idênticas, A, B e C, estão suspensas, por fios isolantes, a três suportes. Para testar se elas estão carregadas, realizam-se três experimentos durante os quais se verifica com elas interagem eletricamente, duas a duas:
Experimento 1: As esferas A e C, ao serem aproximadas, atraem-se eletricamente, como ilustra a figura 1:
Experimento 2: As esferas B e C, ao serem aproximadas, também se atraem eletricamente, como ilustra a figura 2:
Experimento 3: As esferas A e B, ao serem aproximadas, também se atraem eletricamente, como ilustra a figura 3:



Formulam-se três hipóteses:
I - As três esferas estão carregadas.
II - Apenas duas esferas estão carregadas com cargas de mesmo sinal.
III - Apenas duas esferas estão carregadas, mas com cargas de sinais contrários.
Analisando o resultados dos três experimentos, indique a hipótese correta. Justifique sua resposta.


Resolução: clique aqui

Desafio:

Aproxima-se uma esfera metálica A, eletrizada positivamente, de duas esferas metálicas idênticas B e C, inicialmente descarregadas e encostadas uma na outra. Represente na figura abaixo as cargas elétricas induzidas nas esferas B e C:



Em seguida, afasta-se um pouco a esfera B da esfera C e afasta-se a esfera A para bem longe de B e C. Represente, nesta situação, a distribuição das cargas elétricas em B e C:



Estando a esfera A bem distante, como seria a distribuição das cargas elétricas  em B e C, supostas também bem distantes uma da outra?



Resolução dos exercícios tipo ENEM - Termometria - aulas 1 e 2

 

Resolução dos exercícios da 1ªAula

1.



 

 

 

 





 


 

 


 

 

Resolução dos exercícios da  2ªAULA

1.    

Da figura 1: para P =150W, vem: R=325 ohm

Da figura 2: para R=325ohms, vem: t = 3000°C

Resposta:c


2.

    tC/5=(tF-32)/9=>tF=(9tC/5)+32=>tF= 1,8tC+32=>

tF=1,8.(-200)+32(°F)=>TF=-328°F

 

TK=tC+273=>TK= -200 +273=>TK=73K

Resposta:a


3.  

  tC/5=(tF-32)/9=>tF=(9tC/5)+32=>tF= 1,8.-271,25+32=>

tF=-488,25+32  tF=-456,25°F

 

TK=tC+273=>TK= -271,25+273K=>tK=1,5K

Valores aproximados: tF=-456°F e tK=2K

Resposta:b


             4.   

                 A temperatura do gás é indicada pelo mesmo número X nas escalas Celsiu e Fahrenheit. Podemos escrever:

tC=X°C e tF= X°F

De  tF= 1,8tC+32, vem:X= 1,8X + 32=>0,8 X=-32=> X = -40

Portanto:       tC=-40°C e tF= -40°F

          

             5.  

               Comparando a escala Celsius (C) com a escala (E) criada pelo exercício, temos:

(tC-0)/(100-0)=(tE –(-20))/(580-(-20))=>

tC/100 = (tE+20)/600=> tC = (tE+20)/6=>tE=6tC-20

 

 

 









quarta-feira, 28 de fevereiro de 2024

Exercício tipo ENEM - aula 2 Termologia

 






                            4.     Dois termômetros um graduado na escala Celsius e o outro na

                            escala Fahrenheit, fornecem a mesma leitura para a temperatura de um

                            gás. Determine o valor dessa temperatura.



                         5.  Uma escala termométrica adota os valores -20 e 580 para os  

                          pontos do gelo e do vapor. Qual é a relação entre esta escala e a escala  

                          Celsius?     

Exercícios tipo ENEM (1ª aula) [

 

EXERCICIO 1


EXERCICIO 2


 

EXERCICIO 3

 

                          


EXERCICIO 4


 

EXERCICIO 5

    

terça-feira, 13 de fevereiro de 2024

TERMOLOGIA - Aula 2

 

Cursos do Blog - Termologia, Óptica e Ondas

Termômetro graduado nas escalas Celsius e Fahrenheit
 
2ª aula
Termometria (II)

 Nicolau

Iniciamos o estudo de Termometria. Vamos continuar com este assunto. Para reforçar os conceitos da aula passada estude o resumo abaixo e, na sequência, resolva os exercícios.

As escalas Celsius e Fahrenheit

Na escala Celsius, adotam-se os valores 0 ºC e 100 ºC para o ponto de gelo e para o ponto de vapor, respectivamente.

Na escala Fahrenheit, adotam-se os valores 32 ºF e 212 ºF para o ponto de gelo e para o ponto de vapor, respectivamente.

Conversão entre a temperatura Celsius (θC) e a temperatura Fahrenheit (θF)


Relação entre a variação de temperatura na escala Celsius (ΔθC) e na escala Fahrenheit (ΔθF)


A escala absoluta Kelvin

escala absoluta Kelvin adota a origem no zero absoluto, estado térmico em que cessaria a agitação térmica. Sua unidade (kelvin: K) tem extensão igual à do grau Celsius (ºC).

Relação entre a temperatura Kelvin (T) e a Celsius (θC)

 
Relação entre as variações de temperatura



 

Exercícios básicos
 
Exercício 1:

A variação de temperatura de um corpo, medida com um termômetro graduado na escala kelvin, foi de 25 K. Qual é a correspondente variação na escala Fahrenheit? 

Resolução: clique aqui

Exercício 2:
Uma escala E adota os valores 15 °E para o ponto do gelo e 105 °E para o ponto do vapor. Qual é a indicação dessa escala que corresponde à temperatura de 72 °F?

Resolução: clique aqui

Exercício 3:
A variação de temperatura de 108 °F equivale a: 

a) 42 °C     b) 84 °C     c) 108 °C     d) 60 K     e) 333 K

Resolução: clique aqui 

Exercício 4:
A temperatura indicada por um termômetro graduado na escala Fahrenheit excede em duas unidades o triplo da indicação de outro termômetro graduado na escala Celsius. Qual é esta temperatura medida na escala Kelvin?

Resolução: clique aqui  

Exercício 5:
Antigamente foi usada uma escala absoluta, criada pelo engenheiro e físico escocês Willian John Maquorn Rankine* (1820-1872), que adotava como unidade o grau Rankine (°Ra), cuja extensão era igual à do grau Fahrenheit (ºF) e que considerava o zero absoluto como 0 ºRa.

Determine:

a) a temperatura do zero absoluto na escala Fahrenheit;
b) a relação entre a temperatura absoluta Rankine (TR) e a temperatura Fahrenheit correspondente (θF);
c) os valores das temperaturas correspondentes ao ponto do gelo e ao ponto do vapor na escala absoluta Rankine.
*Siga o link e saiba mais.

Resolução: clique aqui 

Exercícios de Revisão 

Revisão/Ex 1: 
(UEFS)
Tomar chá preto, a 80 ºC, com uma pequena quantidade de leite é hábito bastante comum entre os londrinos. O valor dessa temperatura em ºF (Fahrenheit), que é o sistema utilizado na Inglaterra, é, aproximadamente,

A) 165                      C) 172                      E) 180
B) 169                      D) 176


Resolução: clique aqui 

Revisão/Ex 2: 
(UPE)
Foram mergulhados, num mesmo líquido, dois termômetros: um graduado na escala Celsius, e o outro, na escala Fahrenheit. A leitura em Fahrenheit supera em 100 unidades a leitura em Celsius. Qual era a temperatura desse líquido?

A) 85 ºF     B) 100 ºF     C) 130 ºF     D) 165 ºF     E) 185 ºF
 

Resolução: clique aqui  

Revisão/Ex 3:
(U. Mackenzie – SP)
Um termômetro mal graduado
Cna escala Celsius, assinala 2ºC para a fusão da água e 107ºC para sua ebulição, sob pressão normal. Sendo θE o valor lido no termômetro mal graduado e θC
 o valor correto da temperatura, a função de correção do valor lido é:
 

a) θC = (50/51) (θE-2)               d) θC = (20/21) (θE-2)
b) θC = (20/22) (2 θE-1)            e) θC = (21/20) (θE-4)
c) θC = (30/25) (θE-2) 

Resolução: clique aqui
 
Revisão/Ex 4:
(ITA – SP)
Para medir a febre de pacientes, um estudante de medicina criou sua própria escala linear de temperaturas. Nessa nova escala, os valores de 0 (zero) e 10 (dez) correspondem respectivamente a 37 ºC e 40 ºC. A temperatura de mesmo valor numérico em ambas escalas é aproximadamente:
 

a) 52,9 ºC     b)  28,5 ºC     c)  74,3 ºC     d)  –8,5 ºC     e)  –28,5 ºC

Resolução: clique aqui 

Revisão/Ex 5
(Unifor-Ce)
Um estudante resolveu criar uma escala E de temperaturas e, comparando-a com a escala Celsius, obteve o gráfico abaixo.



Na escala E do estudante, a temperatura do corpo humano é mais próxima de:

a) 25 °E          b) 20 °E         c) 15 °E         d) 10 °E         e) 5 °E


Resolução: clique aqui 

Desafio:

A escala Rankine, criada pelo engenheiro e físico escocês William John Macquorn Rankine (1820-1872), é também uma escala absoluta que adota como unidade o grau Rankine (°Ra), cuja extensão é igual à do grau Fahrenheit (°F) e que considera o zero absoluto como 0 °Ra.

Determine:


a) a temperatura do zero absoluto na escala Fahrenheit;
b) a relação entre a temperatura absoluta Rankine (T
R) e a temperatura Fahrenheit correspondente (θF);
c) os valores das temperaturas correspondentes ao ponto do gelo e ao ponto do vapor na escala absoluta Rankine.



Resolução do desafio anterior:

Três termômetros graduados, respectivamente, nas escalas Fahrenheit, Celsius e Kelvin, denominados respectivamente  primeiro, segundo e terceiro termômetros, são imersos num líquido contido num recipiente. A diferença  entre as leituras do primeiro e segundo termômetro é igual à diferença entre as leituras do terceiro e do segundo termômetro. Quais são as leituras nos três termômetros?


θF - θC = T - θC => θF = T
θC/5 = (θF - 32)/9 => θC/5 = (T - 32)/9 => θC/5 = (θ+ 273 - 32)/9 =>
θC/5 = (θ+ 241)/9
9θC = 5θC + 1205 => θC = 301,25 °C
T = 301,25 + 273 => T = 574,25 K
θF = 574,25 °F